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We have used the solution of the inverse problem to determine the causal char- 
acteristics of the heat-transfer process in electric motors. 

Investigation and experimentation involving thermal processes play a significant role 
in the design of electric motors and in the selection of their regime parameters. Day-to-day 
experience shows that the success of such investigations depends to a significant extent on 
the reliability with which the experimental information is processed, as well as on the valid- 
ity of the mathematical heat-transfer models that have been selected. An effective method 
for calculating the thermal state of electric motors as technical objects of complex construc- 
tion is the method of equivalent thermal circuits (ETC) [1-5] according to which the object 
being investigated is conditionally divided into isothermal units which exchange heat with 
each other and with the ambient medium. It was demonstrated in [6] that when this division 
is sufficiently fine the ETC method is comparable in accuracy to the method of finite dif- 
ferences. Here we will also find a description of the method of directing the finite-dif- 
ference schemes in the ETC to the steady-state regime. It is usually assumed [7, 8] that 
the utilization of the thermal conductivities calculated for the steady-state regime intro- 
duce no significant errors into the analysis of the nonsteady regime. As a matter of fact, 
we must treat this contention rather carefully if the object contains sources of heat that 
are subject to rapid changes in power; however, the division into minute details must be ac- 
complished with acceptable accuracy. 

When we use the ETC method to calculate the thermal state of objects, the mathematical 
model of heat transfer is a system of ordinary differential first-order equations 

Ci dTl = ~ ~u (Tj - -  T~) -Jr Pi, i = 1, N, ( 1 ) dx f4i 

T,(O) = To,, i =  l, N, (2) 

where t he  pa rame te r s  Ci,  k i j ,  Pi in  the  g e n e r a l  case  a re  t e m p e r a t u r e  f u n c t i o n s  of  t h e  ETC 
nodes, as well as functions of time. 

The coefficients kij in the rotated form include conductivities due to radiation, free 
and forced convection, thermal conductivity, contact conductivities through threaded and glued 
joints, and pressure fittings. These sources of heat exhibit diverse physical characteristics: 
Joule heat, friction in the gas clearances, and in the supports. 

Such a multiplicity of physical heat-transfer phenomena in electric motors, some of which 
have by no means been studied adequately, leads to a situation in which a portion of the coef- 
ficients in the equations of system (i), (2) is known with a considerable level of indeter- 
minacy in virtually any of the calculations. 

Thus, the thermal regime of a stator, one of the most heavily loaded parts of a motor, 
is determined to a significant degree by the conductivity of the windings around the bundle 
of wires. The problem of finding the equivalent thermal conductivity keq of the windings 
has been studied in numerous references, for example, in [9-12]; however, as indicated in 
[12], the scattering in the values of keq, obtained by various methods, amounts to 30%. 

As a consequence of the complexity of the geometry and inadequacy of information regard- 
ing a number of parameters, an analogous situation exists in the analysis of the radiation 
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processes [i, 3, 13-16], as well as in the processes of free and forced convection [3, 17-21], 
and the heat generated in the gas clearances [3, 20, 21]. 

Thus, an investigation into the thermal state of electric motors in the nonsteady regime 
must make provision, as a necessary stage, for the correction of the mathematical model so 
as to identify the coefficients of system (i), (2) that have not been determined. 

From the standpoint of cause and effect, the problem of identifying the ETC parameters 
is an inverse heat-exchange problem (IHEP) [4], for which the initial data, in addition to 
the structure of the mathematical model (i), (2), and the known coefficients Ci, Xij, Pi, 
are also represented by the temperatures of certain experimentally derived sections of the 
object. 

Let us examine the extreme formulation of the IHEP, which exhibits a number of advan- 
tages over other formulations: the possibility of taking into consideration a priori in- 
formation and "overdeterminacy," as well as utilization of the iteration regularity prin- 
ciple [4, 22-24]. 

Let the thermal state of the object be described by system (i), (2), for which the tem- 
peratures of certain units are known: 

T,h(~ = T ~ ( ~ ,  k = t, K, (3)  

where  i k i s  t h e  number o f  t h e  s e c t i o n  in  which t h e  k - t h  t e m p e r a t u r e  s e n s o r  i s  l o c a t e d ;  K i s  
t he  number o f  t e m p e r a t u r e  s e n s o r s .  

We have to determine the unknown coefficients of system (i), (2) from the condition 

K ~m 

h = l O  

(4) 

where ~2 is the total error in the temperature measurements and calculations. 

We will assume that the identified coefficients of system (i), (2) are dependent on time. 
However, we can undertake the physical description of these characteristics after they have 
been determined to be functions of time. Thus, if it is the radiative conductivity between 
the i-th and j-th sections of the ETC that is being identified, i.e., ~rad(~, Ti, Tj) = 

~(T i + Tj) (Ti 2 + Tj2), and if the time-related distribution of this parameter is described 
by the function ~*(~), the identification of the radiative conductivity as a physical rela- 
tionship reduces to the determination of the quantity ~ from the condition 

I1 ~ [T~ (,) + rj (~) ] [Tf(~).+Ty (r  ~* (~)ll-+rain, (5) 

where the norm t l ' l l  is given in the appropriate space, for example, in the functional space 
quadratically integrated on segment [0, ~m]" 

In order to solve the IHEP by the gradient method, an effective approach involves the 
utilization of the problem from [25] conjugate to (i), (2). The structure of this conjugate 
system of ordinary linear differential equations with respect to the functions {~i([), i = 
i~ N} will be determined by the structure of system (i), (2) and by the dependence of its 
coefficients on temperature and time: 

- -  C i - -  

d ~  K 
dT = ~ )~;] (*~ - -  ~2,) + (C/-t-- P; ) *,  -t-- 2 ~ 6uh (T, k - -  T2 ), i ---- 1, N, 

/:~i k = l  
(6)  

@~(%0 = 0 ,  g =  1, N. (7)  

Here ~ij' = ~ij -- (Tj - Ti)d~ij/dTi, if the conductivity hij depends explicitly on the tem- 
peratures of the i-th and j-th sections, Xij' = Xij, if the conductivity ~ij depends expli- 

citly only on the time, the quantity C i' = dCi/d~ is different from zero only in the event 
of explicit relationship between heat capacity C i and time, the quantity Pi' = dPi/dTi is 
different from zero only when the generated heat Pi depends explicitly on the temperature 
of the i-th section. 
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Structure of the test ETC (a) and results from the 
solution of the direct problem (b). 
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Fig. 2. Determination of the parameter C z as a function of 
time (a) and temperature (b): i) actual solutions; 2) ini- 
tial approximation; 3) determination of solution (20th 
iteration). 
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Fig. 3. Determination of the parameter kz= over time as a 
function of the location of the temperature sensor: i) 
actual solution; 2) initial approximation; 3, 4) determined 
solution with the sensor positioned, respectively, at the 
first and second nodes (20th iteration). 

The components of the functional gradient are expressed in terms of the solution for 
the conjugate system in the following manner: 

dTi 
:~i (~) = - ~ ~---~, ( 8 )  

Jxu  (x) : r (Ti - -  TI) + ~j  (Tj - -  Ti),  ( 9 )  

J ~  (~) = *~. (lO) 
One method of solving the IHEP was to use the method of steepest descent with linear 

estimates of the optimum descent depths ~C, 8~, ~P in each iteration. 

To check on the operational validity of the algorithm, we introduced into our examina- 
tion an abstract object modeled by a two-section ETC (Fig. la), with the following selection 
of parameter relationships: C z = i + Tz, C 2 = i + 0.5T=, kz2 = i +a(T z + T2) 2 for a = 0.25, 
Pz = Tz exp (-TI), P2 = i - T=. The initial temperatures of the node sections, as well as the 
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Fig. 4. Determination of the parameter Pz as a function of 
time for unperturbed (a) and perturbed (b) temperatures on the 
basis of the normal law with o T = 2% Tzmax (with an initial 
zeroth approximation): i) real solution; 2) determined solu- 
tion (20th iteration); 3) stop because of discrepancy (Sth 
iteration). 

temperature of the ambient medium, were assumed to be zero, while the inlet temperatures were 
those section temperatures calculated from the direct problem (Fig. ib). The number of time 
intervals was set equal to i00 for ~m = 20. 

Three IHEP were solved independently of each other in terms of the parameters CI, X~2, 
and Pz. The iteration process was stopped with the "joining" of the approximations for the 
unperturbed inlet temperatures and on the basis of the criterion of discrepancy for the in- 
let temperatures perturbed in accordance with the normal law. 

The results shown in Figs. 2-4 allow us to draw the following conclusions. The quality 
of identification is determined by the location of the temperature sensors. The preliminary 
analysis of the sensitivity of the section temperatures to changes in the parameter ~12 de- 
monstrated that the effect of this parameter on the temperature of the first section is con- 
siderably stronger than on the temperature of the second section, so that the result shown 
in Fig. 3 is completely explainable on the basis of the approach proposed in [26]. 

However, the method of positioning the temperature sensors is not the only factor which 
governs the accuracy with which the ETC parameters are identified. An important condition 
for the reduction in the error of determination is the selection of an appropriate thermal- 
regime control for the object in the experiment. For example, we can see from Fig. 3 that 
in the vicinity of the time point �9 = 3, regardless of the locations of the temperature sen- 
sors, the parameter Xz2 cannot be determined, i.e~ there is no uniqueness. It might be noted 
that at the same instant of time we have T I = T 2 (see Fig. ib). Since the conductivity Xl2 
characterizes the temperature difference between the first and second sections, it becomes 
clear why the determination of the conductivity X12 is impaired in the vicinity of this time 
point. The analogously poor determinability of the heat capacity C I over a significant seg- 
ment of the time interval occurs for the same reason as on approximation to the steady ther- 
mal state which is a consequence of the corresponding choice of heat sources, the rate of 
change in section temperature drops sharply and, as a result, the influence of the heat capa- 
city on the thermal state of the object diminishes significantly. 

Thus, the selection of the control mechanism during the course of the experiment to mea- 
sure the temperatures at these sections cannot be:arbitrary. Excellent reproducibility of 
heat capacity for any section of the ETC in a given time or temperature interval presupposes 
the nonsteadiness of the thermal regime of this section in this interval. Precisely in the 
same way, the greater the temperature differences between T i and Tj, the better the repro- 

ducibility of the conductivity Eij that we can expect. 

As is demonstrated by the results of the calculations, reproducibility of the parameters 
is absent in each and every case when ~ = T m. It was indicated in [4] that the accuracy of 
the calculation can be increased by expanding the time interval, through utilization of the 
a priori information regarding the parameter to be identified in the choice of the initial 
approximation and in taking smoothness into consideration. 

All of the above-enumerated unique features involved in the reproducibility of the param- 
eters in system (i), (2) are closely associated with the problem of uniqueness in the solu- 
tion of the IHEP. The formulation of the inverse problem in which the quantities to be iden- 
tified are regarded to be functions of time assumes a rather broad class of permissible solu- 
tions. Under these conditions, the uniqueness theorems [27-30] play a principal role, and 
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these impose certain conditions on the IHEP data, of which we actually spoke earlier. How- 
ever, it is assumed in the cited references that the heat-transfer process follows the 
Fourier law (distributed model) in canonical bodies. At the same time, rigorous conditions 
of uniqueness for the solution of the IHEP, formulated for model (i), (2), are extremely ur- 
gent, since the search for the unknown parameters of the ETC as functions of time is governed 
by the fact that in the presence of complex geometric shapes in the nonsteady case there is 
an absence of sufficiently simple and reliable physical relationships linking these quanti- 
ties, such as, for example, the conductivities of free and forced convection, contact conduc- 
tivities, etc. This inadequate theoretical research base with respect to a number of phe- 
nomena relating to the transfer of heat in electric motors compels us to resort to the identi- 
fication of ETC parameters in the form of functions of time. 

It should be noted that as we turn from the identified parameters to their physical re- 
lationships rather smoothly the validity of the inverse problem is improved, since, as was 
noted in [4], in this case the class of permissible solutions is narrowed. Thus, determina- 
tion of the coefficient for the nonlinear component in the conductivity %12 from the condi- 
tion (5) in the presence of perturbations in the inlet temperature (o T = 3% Tzmax) yields 
a value of a = 0.235, which is sufficiently close to the actual value a= 0.25. 

NOTATION 

Ti, temperature of the i-th node; Ci, heat capacity of the i-th node; %ij, thermal con- 
ductivity between the i-th and j-th nodes; Pi, power of the heat generated in the i-th node; 
T, instantaneous time; J, specific functional; ~i, conjugate function; OT, mean-square devia- 
tion in the normal perturbation law; a, coefficient of nonlinear identified conductivity in 
the test problem. 
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INVESTIGATING THE DIAGNOSTICS ALGORITHMS OF THE THERMAL EFFECT 

IN DESIGN 

O. M. Alifanov and I. E. Balashova UDC 536.24 

We examine the iteration solution algorithms of inverse heat-conduction prob- 
lems (IHCP) with consideration of some a priori information regarding the 
sought relationship. 

In recent times, the derivation of the characteristics applicable to heat-exchange pro- 
cesses based on the methodology of inverse problems has gained increasing applicability, both 
in the processing of experimental results, as well as in the construction of mathematical 
models of real processes. This has stimulated further development of solution algorithms 
for inverse heat-exchange problems and more extensive investigation of their properties from 
the standpoint of practical application. 

Let us formulate some inverse problems in the form 

Au=[, u~U, [CF, (1) 

where A: U ~ F is a nonlinear operator in the general sense; U and F are Hilbert spaces. We 
know from physical considerations that u, as a rule, is a smooth function. Therefore, for 
U we make use of the Sobolev space W2 k. The function f, since it is a result of measurements, 
is generally known with some error and represents a rather arbitrary relationship f6" Natu- 
rally in this case the space L 2 must be examined from the standpoint of F. 

The operator that is the reciprocal of A is usually bounded, i.e., the formulated prob- 
lem is incorrect and for its solution we must make use of regularizing algorithms. In the 
following, for this purpose, we employ a method based on iteration regularization. Research 
has shown [i] that excellent effectiveness is achieved by IHCP solution algorithms based on 
a scheme from the method of conjugate gradients, where the iteration number k is taken as 
the regularization parameter 

uh+l  = uh -- ~h Ph, k = 0, 1 . . . . .  K* ,  ( 2 )  

w here  t h e  d i r e c t i o n  o f  d e s c e n t  

ph+x = J S k  (u~,+,) + ~ + ~  p~, 

(J~-k (u,,+,), J ~ h  (u,,) - -  Jt~q~ (uh+,))w? y o = O ;  ~'~41=-- 
II Jt~,h (uk)[l~,k 

(3) 
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